COMPUTER SCIENCE
AND
SOFTWARE ENGINEERING

AUBURN UNIVERSITY

SAMUEL GINN COLLEGE
OF ENGINEERING

April 28, 2011

Dr. Ahmed Louri

Program Director

Division of Computer and Network Systems

Directorate for Computer & Information Science & Engineering
National Science Foundation

Dear Dr. Louri:

Thank you very much for your time and efforts on Dr. Xiao Qin’s NSF CAREER award. | am
delighted to write this letter to show my support for Dr. Xiao Qin’'s CAREER project that is currently
being supported by your Software and Hardware Foundations (NSF-SHF) program.

In the past two years, Dr. Qin has completed the following four research tasks described in his NSF
CAREER proposal:

Developing Multicore-Embedded Smart Disks

Improving MapReduce Performance through Data Placement}

An Offloading Framework for I/O Intensive Applications on clusters}

Using Active Storage to Improve the Bioinformatics Application Performance

In the first research task, Dr. Qin and his doctoral students developed a multicore-embedded smart
disk system that can improve performance of dataintensive applications by offloading data
processing to multicore processors embedded in disk drives.

In the second research task, Dr. Qin’s research group shows that ignoring the data locality issue in
heterogeneous environments can noticeably reduce the MapReduce performance. They addressed
the problem of how to place data across nodes in a way that each node has a balanced data
processing load.

In the third task, Dr. Qin’s team developed an offloading framework that is able to be easily applied
in either an existing or a completely newly developed I/O intensive application.

In the last task, Dr. Qin and his graduate students implemented a pipelining mechanism that
leverages active storage to maximize throughput of data-intensive applications on a high-
performance cluster.

Overall, | am very satisfied with Dr. Qin’s progress on his NSF CAREER project. | will continue my
strongest support for his NSF CAREER project.

Sincerely,

Vi 4 i
ik ey A
/;/ . ,(; CAaAf /

Kai H. Chang
Professor and Chair
changka@auburn.edu
334-844-6310

3101 Shelby Center for Engineering Technology, Auburn, AL 36849-5347, USA - 334-844-4330 - Fax 334-844-6329 -
www.eng.auburn.edu/csse/

mailto:changka@auburn.edu

Years 1 and 2 (2009-2011) Annual Report for NSF
Award CCF-0845257
CAREER: Multicore-Based Parallel Disk Systems for Large-Scale

Data-Intensive Computing

Xiao Qin *
Department of Computer Science and Software Engineering

Auburn University, Auburn, AL 36849

April 29, 2011

1 Research and Education Activities

1.1 Developing Multicore-Embedded Smart Disks

In this study, we developed a multicore-embedded smart disk system that can improve per-
formance of dataintensive applications by offloading data processing to multicore processors
embedded in disk drives. Compared with traditional storage devices, next-generation disks
will have computing capability to reduce computational load of host processors or CPUs.
With the advance of processor and memory technologies, smart disks are promising devices
to perform complex on-disk operations. Smart disks can avoid moving a huge amount of
data back and forth between storage systems and host processors. To enhance the perfor-
mance of data-intensive applications, we have designed a smart disk called McSD, in which
a multicore processor is embedded. We have implemented a programming framework for
data-intensive applications running on a computing system coupled with McSD. The pro-
gramming framework aims at balancing load between host CPUs and multicore embedded
smart disks. To fully utilize multicore processors in smart disks, we have implemented the
MapReduce model for McSDs to handle parallel computing. A prototype of McSD has been
implemented in a PC cluster connected by Gigabit Ethernet. McSD significantly reduces
the execution time of word count, string matching, and matrix multiplication. Overall, we
conclude that, integrated with MapReduce, multicore-embedded smart disk systems are a
promising approach for improving I/O performance of data-intensive applications.

*xqin@Qauburn.edu

2

1.2 Improving MapReduce Performance through Data Placement

MapReduce has become an important distributed processing model for large-scale data-
intensive applications like data mining and web indexing. HadoopCan open-source imple-
mentation of MapReduce is widely used for short jobs requiring low response time. The
current Hadoop implementation assumes that computing nodes in a cluster are homoge-
neous in nature. Data locality has not been taken into account for launching speculative
map tasks, because it is assumed that most maps are data-local. Unfortunately, both the
homogeneity and data locality assumptions are not satisfied in virtualized data centers. We
show that ignoring the data locality issue in heterogeneous environments can noticeably re-
duce the MapReduce performance. In this research task, we address the problem of how to
place data across nodes in a way that each node has a balanced data processing load. Given
a data intensive application running on a Hadoop MapReduce cluster, our data placement
scheme adaptively balances the amount of data stored in each node to achieve improved
data-processing performance. Experimental results on two real data-intensive applications
show that our data placement strategy can always improve the MapReduce performance by
rebalancing data across nodes before performing a data-intensive application in a heteroge-
neous Hadoop cluster.

1.3 An Offloading Framework for I/O Intensive Applications on
clusters

In this study, we propose an offloading framework that is able to be easily applied in either
an existing or a completely newly developed I/O intensive application with minor efforts.
In particular, we not only illustrate core theory of designing an offloading program, such
as structures and methods of offloading programs and controlling execution paths, but also
discuss several essential issues which are required to be carefully considered in implementa-
tion, including configuration, offloading work flow, programming interfaces and data sharing.
In order to compare performance of ofloading applications with corresponding original ver-
sions, we have applied offloading to five programs and measured them in a typical cluster.
The experimental results show that offloading applications run much faster than original
ones and systems on which offloading applications execute have remarkably lower network
burden than ones original applications run on.

1.4 Using Active Storage to Improve the Bioinformatics Applica-
tion Performance

Active storage is an effective technique to improve applications’ end-to-end performance by
offloading data processing to storage nodes. In this research task, we present a pipelining
mechanism that leverages active storage to maximize throughput of data-intensive appli-
cations on a high-performance cluster. The mechanism overlaps data processing in active
storage with parallel computations on the cluster, thereby allowing clusters and their ac-
tive storage nodes to perform computations in parallel. To demonstrate the effectiveness of

3

the mechanism designed for active storage, we implemented a parallel pipelined application
called pp-mpiBLAST, which extends mpiBLAST that is an open-source parallel BLAST tool.
Our pp-mpiBLAST relies on active storage to filter unnecessary data and format databases,
which are then forwarded to the cluster running mpiBLAST. We develop an analytic model
to study the scalability of pp-mpiBLAST on large-scale clusters. Measurements made from
a working implementation suggest that this method reduces mpiBLAST’s overall execution
time by up to 50%.

1.5 Mini Conference in the Advanced Operating Systems Class

A mini-conference model was used to motivate and educate graduate students to conduct re-
search projects in the discipline of storage systems, energy-efficient computing, and prefetch-
ing/caching for file systems. By the end of the Spring 2010 semester, when the Comp7500
C Advanced Operating Systems Class is taught, each graduate student is required to write
a research paper and submit to a mini-conference. All the student papers were reviewed
and each student gave a presentaion of 20 minutes. After each presentation, each student
had a question-answer session of 5 minutes. The PI also gave constructive comments and
suggestions on each students research project. In this mini-conference model, the graduate
students who are taking the Comp7500 class improved their presentation and communication
skills. After we receive feedbacks from the graduate students, we will formally evaluate the
this class next semester.

2 Findings

A focus of the research activities carried out in the last year is (1) the development of
multicore-embedded smart disks and (2) a data placement module in heterogeneous hadoop
clusters.

2.1 Multicore-Embedded Smart Disks [7]
2.1.1 Design Issues

A growing number of data-intensive applications coupled with advances in processors indicate
that it is efficient, profitable, and feasible to offload data-intensive computations from CPUs
to hard disks [12]. To improve the performance of large data-intensive applications, we
designed McSD - a prototype of multicore-embedded smart disks. Different from the existing
smart-disk solutions, McSD addresses the performance needs of data-intensive applications
using multi-core processors embedded in hard disks.

Fig. 1 depicts the McSD prototype, where each smart disk contains a multicore-processor,
memory, and a SATA disk drive. In what follows, let us address the following design issues.

e How to build a testbed where a McSD smart disk is connected to a host computing
node?

—

— [
HDD

Figure 1: McSD - The prototype of multicore-embedded smart disks. Each smart disk in
the prototype contains memory, a SATA disk drive, and a multicore-processor.

e How to evaluate the performance of McSD in the testbed?
e How to fully utilize a multi-core processor embedded in McSD?
e What is the programming framework for McSD?

e How to pass input parameters from a host to its McSD smart disk?

2.1.2 Design of the McSD Prototype

A traditional smart disk consists of an embedded processor, a disk controller, on-disk mem-
ory, a local disk drive, and a network interface controller (NIC). In our McSD prototype,
we integrate multi-core processors into smart disks. Storage-interfaces of in the existing
smart disk prototypes were not well implemented, because the existing prototypes simply
represented a case where host CPUs and embedded processors are coordinated through the
network interfaces or NICs in smart disks. To fully utilize the storage-interface in a smart
disk, we designed a communication mechanism similar to the The file alteration monitor. In
our prototype, a host computing node communicates with a disk drive in McSD via its stor-
age interface rather than the NIC. In doing so, we made smart disk prototypes cost-effective
since no NIC is needed in McSD. Without using NICs, the McSD prototype becomes closer
to actual smart disk systems. The design details will be described in the two subsections
below.

2.1.3 A Testbed for McSD

Although a few smark disk prototypes have been developed, there is no off-the-shelf com-
modity smart disks. As such, we built a testbed for the McSD prototype. Fig. 2 briefly
outlines the testbed, where two PCs are connected through the fast Ethernet. The first PC
in the testbed plays the role of host computing node, whereas the second one performs as the
McSD smart-disk node. The host computing node can access the disks in the McSD node
through the networked file system or NF'S, which allows a client computer to access files on
a remote server over a network interconnect. In our testbed the host computing node is the

Host Node

SD Node SD Node

CPU
cry
[

]]
HDD HDD

HDD

Figure 2: A testbed for the McSD prototype. A host computing node and an McSD storage
node are connected via a fast Ethernet switch. The host node can access the disk drives in
McSD through the networked file system or NF'S.

Program

McSD Runtime System

Host program SD program: Data-intensive

Y

A D

M [mn)
Host McSD | ® ® ® | McSD
Machine

Figure 3: The programming framework for a host computing node supported by an McSD
smart disk.

client computer; the McSD node is configured as an NFS server. We chose to use NSF as an
efficient means of connecting the host node and the smart-disk node, because data transfers
between the host and smart-disk nodes are handled by NSF.

We run three state-of-the-art benchmarks on this testbed to evaluate the performance of
the McSD prototype. The benchmarks considered in our experiments include word count,
string matching, and matrix-multiplication.

2.1.4 A Programming Framework

Fig 3 shows a programming framework for a host computing node supported by an McSD
smart disk. The framework generates an optimized operation plan for data-intensive pro-
grams running on the McSD testbed for the description of the testbed), where there is a host

6

computing node and a McSD smart-disk node. The framework automatically assigns general
purpose operations to the host computing nodes and offload data-intensive operations to the
McSD node, in which Phoenix for the description of Phoenix) handles parallel data pro-
cessing. Although applying Phoenix in the McSD node can not increase performance for all
applications running in our testbed, Phoenix can substantially boost performance of data-
intensive applications. Because this programming framework provides a relatively flexible
autonomy, data processing modules (e.g., word-count, sort, and other primitive operations)
can be readily added into a McSD smart disk.

To seamlessly integrate Phoenix into a McSD smart disk, we addressed the issue of limited
embedded memory in McSD by implementing new functions like data partitioning, which
split input data files whose memory footprints exceed the memory capacity of the McSD
smart disk.

2.1.5 System Workflow and Configuration

Unlike the previous network-attached smart disks, McSD uses the SATA interface to transfer
data. We implemented the McSD prototype using a host computing node and a multicore-
embedded storage node and 2.1.3 for the design issues of the prototype). In the prototype,
the multicore storage node has no keyboard, mouse, and display unit. Note that storage
nodes in other existing smart-disk prototypes have keyboard and mouse activities. Compared
with the earlier prototypes, our McSD prototype better resembles next-generation multicore-
embedded smart disks. An actual smart disk only needs to process on-disk data-intensive
operations. In other words, smart disks only provides some primitive functions termed as
data-intensive processing modules (or processing modules for short) in the McSD prototype.

Fig. 2 shows the hardware configuration of the McSD prototype where a host node is
connected to a McSD storage node through the SATA bus interface. One of the most
important implementation issues is to allow a host computing node to offload data-intensive
computations to McSD. There are two general approaches to implementing computation
offloading. First, each offloaded data-intensive operation or module are delivered from a
host node to a McSD storage node (hereinafter refered to as McSD or McSD node) when the
operation or module needs to be processed by McSD. Second, all data-intensive operations
and modules are preloaded and stored in the McSD node. Although the first approach can
handle the dynamic environment problem where data-intensive operations/modules are not
predictable, the downside of the first approach lies in high communication overhead between
host nodes and McSD nodes. The second approach reduces the communication overhead
caused by moving data-intensive operations/modules, because the operations/modules are
residing in McSD prior to the execution of the data-intensive programs.

In the process of implementing the McSD prototype, we took the second approach -
preloading data-intensive modules. We believe that the preloading approach is practical
for a vast variety of programs, where data-intensive processing modules can be determined
before the programs are executed in a host computing node accompanied by a McSD smart
disk. In our preloading approach, the program running on the computing node has to invoke
the processing modules preloaded to the McSD node. An invocation mechanism, called

Smart Disk
(McSD node)

—

smartFAM -
! @ -Processing Modules

——
e Host node

1
A4

1 I
| [|
| @ | o @ Main Program |
1
1 ‘
| _ Module Log D
Log files |~ & Result data smanFAM+ L _9* ooy | imensive |
I i e ! functi
4
I

- - - ____ _ _ -

Figure 4: The implementation of smartFAM - an invocation mechanism that enables a
host computing node to trigger data-intensive processing modules in a McSD storage node
(smart-disk node).

smart-file-alternation monitor (smartFAM), was implemented to enable the host node to
readily trigger the processing modules in the McSD node. The implementation issues of
smartFAM are addressed in the next subsection.

2.1.6 Implementation of smartFAM

Fig. 4 illustrates the implementation of smartFAM - an invocation mechanism that enables
a host computing node to trigger data-intensive processing modules in a McSD storage
node. smartFAM mainly contains two components: (1) the inotify program - a Linux kernel
subsystem that provides file system event notification; and (2) a daemon program that
invokes on-disk data-intensive operations or modules.

To make our McSD prototype closely resemble future multicore-embedded smart disks, we
connected the host node with the McSD smart-disk node using the Linux network file system
or NFS. In the NF'S configuration, the host node plays a client role whereas the McSD node
performs as a file server. A log-file folder, created in NFS at the server side (i.e., the McSD
smart-disk node), can be accessed by the host node via NFS. Each data-intensive processing
module/operation has a log file in the log-file folder. Thus, when a new data-intensive
module is preloaded to the McSD node, a corresponding log-file is created. The log file of
each data-intensive module is an efficient channel for the host node to communicate with the
smart-disk node (McSD node). For example, let us suppose that a data-intensive module
in the McSD node has input parameters. The host node can pass the input parameters
to the data-intensive module residing the McSD node through the corresponding log file.
Thus, the host writes the input parameters to the log file that is monitored and read by the
data-intensive module. Below we address the following two questions related to usage of log
files in McSD:

e (1) how to pass input parameters from a host node to a McSD node?

e (2) how to return results from a McSD node to a host.

Passing input parameters from a host node to a McSD smart-disk node. When
an application running on the host node offloads data-intensive computations to the McSD
node, the following five steps are performed so that the host node can invoke a data-intensive
module in the smart-disk node via the module’s log file (see Fig. 4):

Step 1: The application on the host node writes input parameters of the module to its log
file on in McSD. Note that NFS handles communications between the host and McSD via
log files.

Step 2: The inotify program in the McSD node monitors all the log files. When the data-
intensive module’s log file in McSD is changed by the host, inotify informs the Daemon
program in smartFAM of McSD.

Step 3: The Daemon program opens the module’s log file to retrieve the input parameters
passed from the host. Note that this step is not required if no input parameter needs to be
transmitted from the host to the McSD node.

Step 4: The data-intensive module is invoked by the Daemon program; the input parameters
are passed from Daemon to the module.

Step 5: Go to Step 1 is more data-intensive modules in the McSD node are invoked by the
application on the host.

Returning results from a McSD smart-disk node to a host node. Results pro-
duced by a data-intensive module in the McSD node must be returned to the module’s caller
- a calling application that invokes the module from the host node. To achieve this goal,
smartFAM takes the following four steps (see Fig. 4):

Step 1: Results produced by the module in the McSD node are written to the module’s log
file.

Step 2: The inotify program in the host node monitors the log file, checking whether or not
the results have been generated by McSD. After the module’s log file is modified by McSD
(i.e., the results are available in the log file), This inotify program informs the Daemon pro-
gram in the host node.

Step 3: The Daemon program in the host notifies the calling application that the results
from the McSD node are available for further process.

Step 4: The host node accesses the module’s log file and obtain the results from the McSD
node. Note that this step can be bypassed if no result should be returned from McSD to the
host.

2.1.7 Partitioning and Merging

A second implementation issue that has not been investigated in the existing smart-disk
prototypes is how to process large data sets that are too large to fit in on-disk memory.
In one of our experiments, we observed that the Phoenix runtime system does not support
any application whose required data size exceeds approximately 60% of a computing node’s
memory size. This is not a critical issue for Phoenix, because Phoenix is a MapReduce
framework on shared-memory multi-core processor or multiple processors systems where
memory size are commonly larger than those residing in smart disks. On-disk memory space

automatic manually

———> Starting Point

Space, return, O
other delimited
characters

Starting Point ++

new Partition size

Figure 5: The workflow diagram of integrity checking.

in smart disks is typically small due to smart disks’ constraints on size, power consumption,
and manufacturing cost. Thus, before we attempted to apply Phoenix in McSD smart disks,
we had to address this out-of-core issue - data required for computations in McSD is too
large to fit in McSD memory.

Our solution to the aforementioned out-of-core issue is to partition a large data set into
a number of small fragments that can fit into on-disk memory before calling a MapReduce
procedure. Once a large data set is partitioned, the small fragments can be repeatedly
processed by the MapReduce procedure in McSD. Intermediate results obtained in each
iteration can be merged to produce a final result. Our partitioning solution has two distinct
benefits:

e Supporting huge datasets whose size may exceed on-disk memory capacity.

e Boosting performance of data-intensive applications (e.g., word-count) by improving
on-disk memory usage (see Fig. 7 in Section 2.4.5).

Because both input data sets and emitted intermediate data are located in memory
during the MapReduce stage, the memory footprint is at least twice of input data size.
The partitioning solution, of course, is only applicable for data-intensive applications whose
input data can be partitioned. In our experiments, we evaluated the impact of fragment size
on the performance of applications. Evidence (see Fig. 7 in Section 2.4.5) shows that data
partitioning can improve performance of certain data-intensive applications.

Fig. 26 describes the procedure inside a partitioning function. Fragment sizes of new
partitions are determined by (1) the draft number provided by programmers or systems and

10

g Partition 1 T
‘/// ————————— | m—————— === |
I | | | worker ‘
leduce
1| Coer) N |
| | |
) 3 ‘
| |
‘ sput | | : sont || | : Merge “
| ‘ worker n, ‘ ‘ ‘worker n ‘
1| |]
| | |
|
| ‘ Reduce
I | I
1| | |
| \
I

Figure 6: Workflow of the extended Phoenix model with partitioning and merging

(2) the extra displacements from the integrity-check function in order to make sure the new
partition is ended correctly. The draft number can be manually filled in by the programmer
or automatically determined by a runtime system. Empirical data or operator details may be
required for the automatic scheme to improve performance. The integrity-checking function
can automatically return the extra displacements by scanning from the starting point of
the draft number till the first space, return or the symbol defined by the programmer.
Fig. 6 depicts the workflow of the extended Phoenix in which the partitioning and merging
procedures are incoporated. Conceptually, the entire partitioning/merging process can be
envisioned as a two-stage MapReduce process. The partitioning function is provided by the
runtime system, while the application-dependent Merging function needs to be programmed
by developers to support different applications.

2.1.8 Experimental Testbed

We performed our experiments on a 5-node cluster, whose configuration is outlined in Table
1. There are three types of nodes in the cluster: one of host node, one of Smart Disk nodes,
and three other general purpose nodes. Operating system running on the cluster is Ubuntu
9.04 64-bit version. The nodes in the cluster are connected by Ethernet adapters, Ethernet
cables, and one 1Gbit switch. All the general purpose nodes share disk space on the host
node through Network File System (NFS), while the host node is sharing one folder on the
McSD node. The processing modules, extended Phoenix system and SmartFAM have been
set up on both the host and SD nodes. Then in order to emulate the routine work, we run
the Sandia Micro Benchmark (SMB) among all the nodes except the McSD smart-disk node.
We choose MPICH2-1.0.7 as our the message passing interface (MPI) on the cluster. All
benchmarks are compiled with gce 4.4.1. We briefly describe the benchmarks running on
our testbed in the following sub-section.

e Word Count (WC): It counts the frequency of occurrence for each word in a set of
files. The Map tasks process different sections of the input files and return intermediate
data (key, value) that consist of a word and a value of 1. Then the Reduce tasks add

11

I \/C: vs no.par
[WC: vs se
[0 sM: vs no.par
] sM: vs se

e e

500M 750
Data Size

o

828¢
]
33

Iy @
g

Speedup

w

(a) Performance Speedup of scaling in- (b) Growth curve of Word Count
put data size.

(¢) Growth curve of String Match

Figure 7: Speedups of Word Count and String Matching on partition-enabled Phoenix vs.
original Phoenix and the sequential approach. In Fig. 7(a), the first two bars of each set are
speedups for Word Count using our approach, original Phoenix, and the sequential method,
respectively. The other two bars are speedups for the String-Matching benchmark.

up the values for each identity word. Finally, the words are sorted and printed out in
accordance with the frequency in decreasing order.

e String Match (SM): Each Map searches one line in the “encrypt” file to check
whether the target string from a “keys” file is in the line. Neither sort or the reduce
stage is required.

e Matrix Multiplication (MM): Matrix multiplication is widely applicable to analyze
the relationship of two documents. Each Map computes multiplication for a set of rows
of the output matrix. It outputs multiplication for a row ID and column ID as the
key and the corresponding result as the value. The reduce task is just the identity
function.

e Sandia Micro Benchmark (SMB): It is developed by Sandia National Labora-
tory to evaluate and test high-performance networks and protocols. We use it in our
experiment to emulate the routine work.

12

Table 1: The Configuration of the 5-Node Cluster

Host SD Nodes x3
CPU Intel Core2 Intel Core2 Intel
Quad Q9400 Duo E4400 Celeron 450
Memory 2GB
OS Ubuntu 9.04 Jaunty Jackalope 64bit version
Kernel version 2.6.28-15-generic
Network 1000Mbps

2.1.9 Single-Application Performance

Fig. 7 shows the speedup achieved by using the Partition-enabled programming model, rela-
tive to the no-partition version and sequence implementation respectively. In terms of single
application benchmarks, we observed that the traditional Phoenix cannot support the Word-
count and the String-match for data size larger than 1.5G, because of the memory overflow.
From the Fig. 7, when the data size is in a reasonable interval (say, less than half of the mem-
ory size), the traditional parallel approach provides almost the same performance. However,
in terms of the Word-count, when the data size is huge (compared with the memory size),
the elapsed time of Partition-enabled approach is only 1/6 of the traditional one. When com-
paring with the sequential approach, both the benchmarks can achieve a 2X speedup, which
proves the fully utilization of duo-core processor. Fig. 7(b) and Fig. 7(c) show the plots of
the execution time versus the size of the input data file on the SD platform. From the figure,
since we can observe that the performance curve has linear-like growth, our methodology
provides scalability performance for its audience objective. We can summarize that: (1) for
the very data-size sensitive applications, such as Word Count, the Partition procedure can
not only support data size which cannot fit in the physical memory but also improve the
performance; (2) for the applications that are not very data-intensive, the Partition model
can only enhance their supportability of data-size range. Of course, all those observations
are based on the assumption that the applications are partition-able; (3) the last but not
the least, the use of our Partition-enabled approach can fully utilize the multicore processor
in almost all subjects in this test.

2.1.10 Multiple-application Performance

When multiple applications are running concurrently - following the McSD framework, the
system should exhibit the basic properties: (1) the system overall throughput should be in-
creased, and (2) the overall performance of the application set should be improved. In order
to evaluate our McSD execution framework, we create two multiple-application benchmarks,
each of which majorly contains : a computation-intensive function and a data-intensive one.
To explore how well our system meets the performance expectations, we report two pairs
of application benchmarks: Matrix-multiplicity/Word-count and Matrix-multiplicity /String-
match. The first pair is very data-intensive, or memory-consuming, since the memory foot-

13

20

18 25
16
14

12

Speedup

o N & o
o
5

0
500M 750M 1G 1.25G 500M 750M 1G 1.25G

(a) Host Node Only (b) Tradtional SD

16

14

12

10

Speedup
=

500M 750M 1G 1.25G

(¢) McSD without Partition

Figure 8: Speedups of Matrix Multiplicity and Word-count. Trad_SD - traditional
smart disk (SD) with single-core processor embedded. DuoC_SD-nopar - duo-core processor
embedded smart disk operating in a parallel way without the partitioning function. The
benchmarks are running on the multicore host node only in the Host-only scenario. The last
one, Host-part, is partitioning-enabled on the Host node. Compared with the traditional
smart disk (running sequentially), our McSD improves the overall performance by 2x. With
the data size increasing, the elapsed time of non-partitioned approaches (the DuoC-SD and
Host-only) can cost 16 to 18 times more than that of the McSD approach.

print of Word-Count is around three times of the input data size. On the other hand, the
memory footprint of String-Match is around two times of the input data size. Thus, those
two are representatives of two levels of data-intensive applications.

For each pair of applications, we set up four scenarios to execute the program: (1) the
benchmarks running on the traditional single-core SD mode (a combination of host and
single-core SD node), (2) the benchmarks running on the duo-core embedded SD mode
without Partition function, (3) the programs running on the host node only, and (4) the
they follow the McSD execution framework. In the host machine handles the computation-

14

25

25

Speedup
Speedup

500M 750M 1G 1.25G 500M 750M 1G 1.25G

(a) Host Node Only (b) Tradtitional SD

25

Speedup

500M 750M 1G 1.25G

(¢) McSD without Partition

Figure 9: Speedups of Matrix-multiplicy and String-match. See Fig. 8 for legend
details. Compared with the traditional smart disk (SD) running sequentially, our McSD
improves the overall performance by 1.5x. When data size is increasing, McSD improves the
performance of the non-partitioning approaches (the DuoC-SD and Host-only) by 2x.

intensive part and the SD machine processes the on-disk data-intensive function. From
the data-intensive function perspective, each of the solutions involves three tests: parallel
processing without partition, parallel processing with partition and the sequential solution.

Fig. 8 and Fig. 9 illustrate the performance improvement of using the optimized ap-
proach, the parallel-enabled one with 600MB partition, against the other scenarios. Fig. 8
and Fig. 9 show speedups on the pair of MM/WC and MM/SM, respectively. We defined
the performance speedup to be the ratio of the elapsed time without the optimization tech-

15

nique to that with the McSD technique. From both of the figures, we observe a common
point: compared with the traditional (single-core processor equiped) SD, the McSD (duo-
core processor embedded) avergely improves the overall performance by 2 for both two pairs
of applications. Thus it illustrates that our McSD can fully utilize the multicore processor
by using of MapReduce parallel programming model. The difference between those two sets
of figures obvious. In terms of the MM/WC, the elapsed time of non-partitioned parallel
approaches; host node only and McSD without Partition, increase nonlinearity. When the
data size exceeds a threshold, the speedups averagely achieve 6.8X and 17.4X. However, the
McSD can only make slightly improvement when the data size are 500MB and 750MB (less
than half of the memory size). In contrary, the speedups of the MM /SM ones, which are
less data-intensive than the first pair, are remain almost in the same stage.

As we can see, using our methodology gives better speedups compared with the tra-
ditional SD (averagely 2X) and parallel processing without Partition (maximum to 17X).
While the SD being widely considered to be one of the heterogeneous computing platforms,
the frameworks like ours will be needed to help manage the system and improve the perfor-
mance.

2.2 Data Placement in Heterogeneous Hadoop Clusters [15]
2.2.1 Data Placement in Heterogeneous Clusters

In a cluster where each node has a local disk, it is efficient to move data processing operations
to nodes where application data are located. If data are not locally available in a processing
node, data have to be migrated via network interconnects to the node that performs the data
processing operations. Migrating huge amount of data leads to excessive network congestion,
which in turn can deteriorate system performance. HDFS enables Hadoop MapReduce
applications to transfer processing operations toward nodes storing application data to be
processed by the operations.

In a heterogeneous cluster, the computing capacities of nodes may vary significantly. A
high-speed node can finish processing data stored in a local disk of the node faster than
low-speed counterparts. After a fast node complete the processing of its local input data,
the node must support load sharing by handling unprocessed data located in one or more
remote slow nodes. When the amount of transferred data due to load sharing is very large,
the overhead of moving unprocessed data from slow nodes to fast nodes becomes a critical
issue affecting Hadoop’s performance. To boost the performance of Hadoop in heterogeneous
clusters, we aim to minimize data movement between slow and fast nodes. This goal can
be achieved by a data placement scheme that distribute and store data across multiple
heterogeneous nodes based on their computing capacities. Data movement can be reduced
if the number of file fragments placed on the disk of each node is proportional to the node’s
data processing speed.

To achieve the best 1/O performance, one may make replicas of an input data file of a
Hadoop application in a way that each node in a Hadoop cluster has a local copy of the input
data. Such a data replication scheme can, of course, minimize data transfer among slow and

16

fast nodes in the cluster during the execution of the Hadoop application. The data-replication
approach has several limitations. First, it is very expensive to create replicas in a large-scale
cluster. Second, distributing a large number of replicas can wasterfully consume scarce
network bandwidth in Hadoop clusters. Third, storing replicas requires an unreasonably
large amount of disk capacity, which in turn increases the cost of Hadoop clusters.

Although all replicas can be produced before the execution of Hadoop applications, sig-
nificant efforts must be make to reduce the overhead of generating replicas. If the data-
replication approach is employed in Hadoop, one has to address the problem of high over-
head for creating file replicas by implementing a low-overhead file-replication mechanism.
For example, Shen and Zhu developed a proactive low-overhead file replication scheme for
structured peer-to-peer networks [14]. Shen and Zhu’s scheme may be incorporated to over-
come this limitation.

To address the above limitations of the data-replication approach, we are focusing on
data-placement strategies where files are partitioned and distributed across multiple nodes
in a Hadoop cluster without being duplicated. Our data placement approach does not require
any comprehensive scheme to deal with data replicas.

In our data placement management mechanism, two algorithms are implemented and
incorporated into Hadoop’s HDF'S. The first algorithm is to initially distribute file fragments
to heterogeneous nodes in a cluster (see Section 2.2.2). When all file fragments of an input
file required by computing nodes are available in a node, these file fragments are distributed
to the computing nodes. The second data-placement algorithm is used to reorganize file
fragments to solve the data skew problem (see Section 2.2.3). There two cases in which
file fragments must be reorganized. First, new computing nodes are added to an existing
cluster to have the cluster expanded. Second, new data is appended to an existing input
file. In both cases, file fragments distributed by the initial data placement algorithm can be
disrupted.

2.2.2 Initial Data Placement

The initial data placement algorithm begins by first dividing a large input file into a number
of even-sized fragments. Then, the data placement algorithm assigns fragments to nodes in a
cluster in accordance to the nodes’ data processing speed. Compared with low-performance
nodes, high-performance nodes are excepted to store and process more file fragments. Let
us consider a MapReduce application and its input file in a heterogeneous Hadoop cluster.
Regardless of the heterogeneity in node processing power, the intial data placement scheme
has to distribute the fragments of the input file so that all the nodes can complete processing
their local data within almost the same time.

In our experiments we observed that the computing capability of each node is quite
stable for certain tested Hadoop applications, because the response time of these Hadoop
applications on each node is linearly proportional to input data size. As such, we can quantify
each node’s processing speed in a heterogeneous cluster using a new term called computing
ratio. The computing ratio of a computing node with respect to a Hadoop application can
be calculated by profiling the application (see Section 2.2.4 for details on how to determine

17

computing ratios). It is worth noting that the computing ratio of a node may vary from
application to application.

2.2.3 Data Redistribution

Input file fragments distributed by the initial data placement algorithm might be disrupted
due to the following reasons: (1) new data is appended to an existing input file; (2) data
blocks are deleted from the existing input file; and (3) new data computing nodes are added
into an existing cluster. To address this dynamic data load-balancing problem, we imple-
mented a data redistribution algorithm to reorganize file fragments based on computing
ratios.

The data redistribution procedure is described as the following steps. First, like initial
data placement, information regarding the network topology and disk space utilization of a
cluster is collected by the data distribution server. Second, the server creates two node lists:
a list of nodes in which the number of local fragments in each node exceeds its computing
capacity and a list of nodes that can handle more local fragments because of their high
performance. The first list is called over-utilized node list; the second list is termed as under-
utilized node list. Third, the data distribution server repeatedly moves file fragments from
an over-utilized node to an underutilized node until the data load are evenly distributed. In
a process of migrating data between a pair of an over-utilized and an underutilized nodes, the
server moves file fragments from a source node in the over-utilized node list to a destination
node in the underutilized node list. Note that the server decides the number of bytes rather
than fragments and moves fragments from the source to the destination node. The above
data migration process is repeated until the number of local fragments in each node matches
its speed measured by computing ratio.

2.2.4 Measuring Heterogeneity

Before implementing the initial data placement algorithm, we need to quantify the hetero-
geneity of a Hadoop cluster in terms of data processing speed. Such processing speed highly
depends on data-intensive applications. Thus, heterogeneity measurements in the cluster
may change while executing different MapReduce applications. We introduce a metric -
called computing ratio - to measure each node’s processing speed in a heterogeneous clus-
ter. Computing ratios are determined by a profiling procedure carried out in the following
steps. First, the data processing operations of a given MapReduce application are separately
performing in each node. To fairly compare processing speed, we ensure that all the nodes
process the same amount of data. For example, in one of our experiments the input file
size is set to 1GB. Second, we record the response time of each node performing the data
processing operations. Third, the shortest response time is used as a reference to normalize
the response time measurements. Last, the normalized values, called computing ratios, are
employed by the data placement algorithm to allocate input file fragments for the given
MapReduce application.

Now let us consider an example to demonstrate how to calculate computing ratios used to
guide the data distribution process. Suppose there are three heterogeneous nodes (i.e., Node

18

A, B and C) in a Hadoop cluster. After running a Hadoop application on each node, one
collects the response time of the application on node A, B and C is 10, 20 and 30 seconds,
respectively. The response time of the application on node C is the shortest. Therefore,
the computing ratio of node A with respect to this application is set to 1, which becomes a
reference used to determine computing ratios of node B and C. Thus, the computing ratios
of node B and C are 2 and 3, respectively. Recall that the computing capacity of each
node is quite stable with respect to a Hadoop application. Hence, the computing ratios
are independent of input file sizes. Table 2 shows the response times and computing ratios
for each node in a Hadoop cluster. Table 2 also shows the number of file fragments to be
distributed to each node in the cluster. Intuitively, the fast computing node (i.e., node A)
has to handle 30 file fragments whereas the slow node (i.e., 3) only needs to process 10
fragments.

Table 2: Computing ratios, response times and number of file fragments for three nodes in
a Hadoop cluster

Node | Responce time | Ratio | File fragments | Speed
Node A 10 1 30 Fastest
Node B 20 2 20 Average
Node C 30 3 10 Slowest

2.2.5 Sharing Files among Multiple Applications

The heterogeneity measurement of a cluster depends on data-intensive applications. If multi-
ple MapReduce applications must process the same input file, the data placement mechanism
may need to distribute the input file’s fragments in several ways - one for each MapReduce
application. In the case where multiple applications are similar in terms of data processing
speed, one data placement decision may fit the needs of all the applications.

2.2.6 Data Distribution.

File fragment distribution is governed by a data distribution server, which constructs a
network topology and calculates disk space utilization. For each MapReduce application,
the server generates and maintains a node list containing computing-ratio information. The
data distribution server applies the round-robin algorithm to assign input file fragments to
heterogeneous nodes based on their computing ratios.

A small value of computing ratio of a node indicates a high speed of the node, meaning
that the fast node must process a large number of file fragments. For example, let us consider
a file comprised of 60 file fragments to be distributed to node A, B, and C. We assume the
computing ratios of these three nodes are 1, 2 and 3, respectively (see Table 2). Given
the computing ratios, we can conclude that among the three computing nodes, node A is
the fastest one whereas node B is the slowest node. As such, the number of file fragments
assigned to each node is proportional to the node’s processing speed. In this example, the

19

data distribution server assigns 30 fragments to node A, 20 fragments to node B, and 10
fragments to node C (see Table 2).

2.2.7 Evaluation

We used two data-intensive applications - Grep and WordCount - to evaluate the performance
of our data placement mechanism in a heterogeneous Hadoop cluster. The tested cluster
consists of five heterogeneous nodes, whose parameters are summarized in Table 3. Both
Grep and WordCount are two MapReduce applications running on Hadoop clusters. Grep
is a tool searching for a regular expression in a text file; whereas WordCount is a program
used to count words in text files.

Table 3: Five Nodes in a Hadoop Heterogeneous Cluster

Node CPU Model CPU(hz) | L1 Cache(KB)
Node A | Intel Core 2 Duo | 2 x1G=2G 204
Node B Intel Celeron 2.8G 256
Node C | Intel Pentium 3 1.2G 256
Node D | Intel Pentium 3 1.2G 256
Node E | Intel Pentium 3 1.2G 256

We followed the approach described in Section 2.2.4 to obtain computing ratios of the
five computing nodes with respect of the Grep and WordCount applications (see Table 4).
The computing ratios shown in Table 4 represent the heterogeneity of the Hadoop cluster
with respect to Grep and WordCount. We conclude from the results given in Table 4) that
computing ratios of a Hadoop cluster are application dependent. For example, node A is
3.3 times faster than nodes C-E with respect to the Grep application; node A is 5 (rather
than 3.3) times faster than nodes C-E when it comes to the WordCount application. The
implication of the results is that given a heterogeneous cluster, one has to determine com-
puting ratios for each Hadoop application. Note that computing ratios of each application
only needs to be calculated once for each cluster. If the configuration of a cluster is updated,
computing ratios must be determined again.

Table 4: Computing Ratios of the Five Nodes with Respective of the Grep and WordCount
Applications

Computer Node | Ratios for Grep | Ratios for WordCount
Node A 1 1
Node B 2 2
Node C 3.3)
Node D 3.3)
Node E 3.3)

Figs. 10 and 11 show the response times of the Grep and WordCount application running
on each node of the Hadoop cluster when the input file size is 1.3 GB and 2.6 GB, respectively.

20

Response of Grep in Each Node

1200

1000

(s)

Response Time

400

200

Figure 10: Response time of Grep

5000

4500

4000

(s)

3500

3000

2000

Response Time

1500

1000

500

2500

| PNde:]
[J1.3¢B

1

lﬂ w

Node ID

running on the 5-node Hadoop heterogeneous cluster.

Response of Wordcount in Each Node

}
| e
|[_J1.3e8 1

15

Figure 11: Response time of WordCount running on the 5-node Hadoop heterogeneous

cluster.

Response Time for Grep
300 T T T T T

Response Time (s)

51-2-3.3 S1-2-5 480 in eachAll-in-A All-in-B All-in-C
Ratio

Figure 12: Impact of data placement on performance of Grep.

Response Time for Wordcount

620

Response Time
o
3
3

580

51-2-3.3 S1-2-5 480 in eachAll-in-A All-in-B All-in-C
Ratio

Figure 13: Impact of data placement on performance

of WordCount.

21

22

The results plotted in Figs. 10 and 11 suggest that computing ratios are independent of input
file size, because the response times of Grep and WordCount are proportional to the file size.
Regardless of input file size, the computation ratios for Grep and WordCount on the 5-node
Hadoop clusters remain unchanged as listed in Table 4.

Given the same input file size, Grep’s response times are shorter than those of WordCount
(see Figs. 10 and 11). As a result, the computing ratios of Grep are different from those of
WordCount (see Table 4).

Table 5: Six Data Placement Decisions

Notation Data Placement Decisions
Dirstribuating files under

91.9.3 3 the comput.ing. ratios of. the
grep. (This is an optimal
data placement for Grep)
Dirstribuating files under
the computing ratios of the

S1-2-5 wordcount. (This is an
optimal data placement for
WordCount)

480 in each | Average distribution of files to each node.
All-in-A Allocating all the files to node A.
All-in-B Allocating all the files to node B.
All-in-C Allocating all the files to node C.

Now we are positioned to evaluate the impacts of data placement decisions on the response
times of Grep and WordCount (see Figs. 12 and 13). Table 5 shows six representative data
placement decisions, including two optimal data-placement decisions (see S1-2-3.3 and S1-2-5
in Table 5) for the Grep and WordCount applications. The file fragments of input data are
distributed and placed on the five heterogeneous nodes based on six different data placement
decisions, among which two optimal decisions (i.e., S1-2-3.3 and S1-2-5 in Table 5) are made
based on the computing ratios given Table 4.

Let us use an example to show how the data distribution server relies on the S1-2-3.3
decision - optimal decision for Grep - in Table 5 to distribute data to the five nodes of the
tested cluster. Recall that the computing ratios of Grep on the 5-node Hadoop cluster are
1,2, 3.3, 3.3, and 3.3 for nodes A-E (see Table 4). We suppose there are 24 fragments of the
input file for Grep. Thus, the data distribution server allocates 10 fragments to node A, 5
fragments to node B, and 3 fragments to nodes C-E.

Fig. 12 reveals the impacts of data placement on the response times of the Grep applica-
tion. The first (leftmost) bar in Fig. 12 shows the response time of the Grep application by
distributing file fragments based on Grep’s computing ratios. For comparison purpose, the
other bars in Fig. 12 show the response time of Grep on the 5-node cluster with the other
five data-placement decisions. For example, the third bar in Fig. 12 is the response time of
Grep when all the input file fragments are evenly distributed across the five nodes in the

23

cluster. We observe from Fig. 12 that the first data placement decision (denoted as S1-2-
3.3) leads to the best performance of Grep, because the input file fragments are distributed
strictly according to the nodes’ computing ratios. If the file fragments are placed using the
7 All-in-C” data-placement decision, Grep performs extremely poorly. Grep’s response time
is unacceptably long under the ” All-in-C” decision, because all the input file fragments are
placed on node C - one of the slowest node in the cluster. Under the ” All-in-C” data place-
ment decision, the fast nodes (i.e., nodes A and B) have to pay extra overhead to copy a
significant amount of data from node C before processing the input data locally. Compared
with the ” All-in-C” decision, the optimal data placement decision reduces the response time
of Grep by more than 33.1%.

Fig. 13 depicts the impacts of data placement decisions on the response times of Word-
Count. The second bar in Fig. 13 demonstrates the response time of the WordCount applica-
tion on the cluster under an optimal data placement decision. In this optimal data placement
case, the input file fragments are distributed based on the computing ratios listed in Table 4.
To illustrate performance improvement achieved by our new data placement strategy, we
plotted the other five bars in Fig. 13 to show the response time of WordCount when the
other five data-placement decisions are made and applied. Results plotted in Fig. 13 in-
dicate that the response time of WordCount under the optimal ”S1-2-5” data placement
decision is the shortest compared with all the other five data placement decisions. For ex-
ample, compared with the ”All-in-C” decision, the optimal decision made by our strategy
reduces the response time of WordCount by 10.2%. The ”S1-2-5" data placement decision
is proved to be the best, because this data placement decision is made based on the hetero-
geneity measurements - computing ratios in Table 4. Again, the ” All-in-C” data placement
decision leads to the worst performance of WordCount, because under the ”All-in-C” deci-
sion the fast nodes have copy a significant amount of data from node C. Moving data from
node C to other fast nodes introduces extra overhead.

In summary, the results reported in Figs. 12 and 13 show that our data placement scheme
can improve the performance of Grep and Wordcount by up to 33.1% and 10.2% with averages
of 17.3% and 7.1%.

2.3 An Offloading Framework for I/O Intensive Applications on
clusters [16]

2.3.1 Motivations

Offloading techniques had been applied in a wide range of applications, however there is few
research working on details of its design and implementation. In this paper, we proposed an
offloading framework which is able to be easily applied to either an existing or a completely
newly developed 1/O intensive application with slight efforts. We also illustrate in details
its design and implementation, including theory and key issues of developing an offloading
application. The primary goal of our approach is to not only increase I/O performance, but
remarkably reduce internal network traffic in clusters.
Two factors make our offloading framework desirable and practical:

24
e [/0 inefficiency in data intensive applications, and
e heavy burden of data transmission on internal network of clusters

The inefficiency of I/O performance has gradually become a major bottleneck that al-
though computing power of processors has rapidly increased, the speed of accessing data
from storage systems, including both magnetic and optical media, does not grow as fast as
expected. This problem would be even worse in high performance computing, especially for
running a data intensive application. In addition, it is also a potential limitation on avail-
ability and scalability of entire systems. Thus, approaches of improving [/O performance
play an essential role in large scale clusters.

Another factor by which we are motivated is network burden of data transmission. In
a typical cluster, all data needed by applications running on computation nodes should
be loaded from and stored to storage nodes through internal networks. Facing a similar
condition with disks, the growth rate of network bandwidth is significantly less than speed
of data explosion. Large amount of data transmission would remarkable increase data latency
and decrease performance of entire systems. It would be even worse in Ethernet network,
widely used in community clusters, that tens or hundreds of nodes have to compete with
each other in local networks for a change of sending or receiving a small piece of data.
Therefore, scarcity and sharing of network resource might be another possible thread to
system availability and scalability.

2.3.2 Offloading Framework

In this section, we illustrate an offloading framework at first, and then discuss several essential
issues.

—_—— — — e— — ——

-
Computation | Storage Nodes |

| |

L~ AN €l
(S | —l—j |
I &~ |§§|v
I/\ I§g|/\ :
< AIE |

NN | gl
e 3l g N |
I FELEL!

S S -9|
I e | e
LN JUd S

Figure 14: A typical architecture of cluster

Fig. 14 illustrates a cluster architecture which is accepted as a typical environment for
cluster computing [13] [10]. The cluster comprises of a number of nodes which connect with
each other by internal networks. These nodes are divided into two groups, storage nodes and
computation nodes. The primary responsibility of storage nodes that are attached disks are
to store massive data, while computation nodes mainly focus on computing tasks, including
both CPU intensive and I/O intensive ones.

25

The storage system in this cluster is a Client/Server model that applications execute on
computation nodes as clients and storage nodes run as servers. All data needed by applica-
tions are required to be transmitted back and forth on internal networks. Accessing data in
this way would become an obviously serious bottleneck when amount of data transmission
grows. Thus, it would achieve much better performance if it is able to efficiently reduce data
transmission on network.

©
@
=}
3
o
=4
o
a
®

—_——_—— = P —
I A Computation Node I |
1

ffloadi i
I EPP . @ : Offloading Domain i
I T
X [
I Ioffloadin Domain
|

I App 2 Offloading Domain I

L \oH

Y
@)
—/

Y
0]
—
L - Q— — — — —

[
I
I
I

Figure 15: A framework of an offloading process, circles represent computation or ofloading
parts.

Our design is to assign parts of I/O intensive applications to storage nodes in order to
minimize transmission requirement. As shown in Fig. 15, according to places where programs
are executing, an application can be logically divided into two parts, the one running on
computation nodes entitled computation part and the other running on storage nodes called
offloading part.

An application is also able to be divided by offloading domains (logic processing units).
An offloading domain describes a fully closed relationship between, or a pair of, computation
and offloading parts. An application may have either only one offloading domain or multiple
ones. How many offloading domains it has heavily depends on its design, more exactly the
number of offloading modules. The offloading domains are independent to each other that
one offloading domain can not be interfered by others. In addition, both computation and
offloading parts in an offloading domain are strictly serially processed. In other word, while
the computation part is running, the corresponding offloading part is suspended and vice
versa.

Fig. 16 shows an offloading version of Parallel Word Counter (PWC) which calculates
the number of words in a group of files in parallel. Function PWC and domain_entry are
running as a computation part and word_count is running as an offloading part. We assume
that each domain of PWC processes 2 text files.

In a case of processing 4 text files, PWC will create two threads in function PWC, each
of which will create two offloading domains by serially invoking remote word_count twice.

2.3.3 Design Issues

Before developing an offloading application, there are three essential issues that should be
considered carefully.

26

Computation Part Offloading Part
void PWC(String files[]) —3 int word_counter(String file)
{ {
thread_num = len(files)/2; count=0
fori=0 to thread_num-1 while get a word from file

{ {
create_thread(domain_entry, count++;
files[i*2, i*2+1]) 2 }
} return count

} 5}

1

Create Offload
Domains

L> void domain_entry(String files[])
(fori=0to1
{
call remote word_counter(files[i]); =
}
}

Figure 16: Pseudo code of offloading parallel word count

e How to offload a program to a specified node?
e How to transfer an execution to an offloading part?
e How to share data between computation and offloading parts?

Offloading a program The first issue needed to be taken into account is how to offload
an executable file. Dynamic distribution and pre-configuration are the most widely used
methods today. The main idea of dynamic distribution is to automatically transmit an
executable file and configuration files to specified places and then load them into memory
while an application is running. In this method, details of platform implementation cannot be
ignored if applications are implemented by platform dependent languages, such as assemble
language, C language and etc. While the ones using platform independent language, such
as scripts or java, do not have any necessity to consider what platform they run on. Thus,
how much efforts should be paid on dynamic distribution highly relies on the nature of
applications.

In another method, called pre-configuration, all applications have been configured in
advance. The entire procedure of configuration includes manually compiling applications for
different environments, writing specific configuration files and deploying them onto target
systems. Although it seems a complicated process that we have several steps to do, these
tasks can be automatically completed by a small tool in a short period of time. Moreover, it
greatly simplifies our design that we do not consider platform dependent issues at all. When
an application starts, the proper offloading parts are already on storage nodes. That is the
main reason we choose pre-configuration as the method of offloading a program.

Controlling an execution path The second issue is how to transmit executions back
and forth between computation and offloading parts. we also have couples of language-
independent candidates. CORBA [5] is a distributed programming model which is able to
accommodate a number of components implemented by different languages. These com-
ponents usually execute on different machines and communicate with each other through
networks. However, its extremely complexity often prevents beginners from further using
and learning. It normally requires at least several months for novices to get familiar with its

27

fundamentals [9]. Another factor we have to consider is that storage nodes might be required
to be equipped with powerful processors in order to host incredibly complicated CORBA
framework. Otherwise, processors would be always occupied by workload of CORBA routine
jobs.

Another feasible option is Remote Procedure Call (RPC) technique, which is also a
broadly accepted method of invoking a function to execute in another machine as if calling
a local one. The main feature of RPC is that it is quite easy to learn and use. So far there
are a lot of existing RPC libraries implemented by various general-purpose programming
languages and freely opened to developers. Due to its simplicity, since RPC was applied to
the first version of Network File System(NFS) [11], various well-known applications, such as
MapReduce [6] and Hadoop [4], adopted it as a basis service provided by system as well.
Therefore, RPC is a better choice for our framework.

Data sharing between both parts The third issue is how to share data, which includes
global variables and code segments. The major difference between offloading applications
from regular ones is that in offloading applications, global resources, such as global variables,
can not be shared by computation and offloading parts. For example, any changes on global
variables in one part is not visible to the other part.

An intuitive solution is to establish a synchronization mechanism of notifying the other
end that global modifications occur. If computation parts modified shared data, they will
immediately send a notification message to offloading parts and wait until receiving a reply.
Although this solution is quite straightforward, complexity of applications would be largely
increased and it may have much message exchanges when global data changes frequently.

Another solution is based on observation that offloading parts are in waiting state when
computation part is running. If global data changes at computation parts in this period of
time, offloading parts would not access it until it receives execution control. Therefore, it
is not necessary to synchronize global modifications in real time. Instead, offloading parts
can be notified later by appending modifications to offloading requests. It at first updates
changes and then processes offloading requests. On the other hand, the changes that occur
at offloading parts can be treated as results in response message as well.

Code segments are another special kind of data needed to be carefully considered. In
applications implemented by compiled languages, due to that addresses of an function in
these two parts may be different after loading into memory, function objects can not be
shared directly. However, in interpreted applications, functions are parsed by names rather
than addresses. So, both two parts are able to obtain identical functions by their names.

In this section, we only discuss reasons why data sharing is important to offoading
applications. And our method of sharing data will be provided in 2.3.4.

2.3.4 Implementation Details

In this section, we describe details of implementing an offloading application and an entire
process of running an offloading application on clusters.

Configuration As mentioned before, we adopt pre-configuration method to offload
an application. We have a number of jobs to do before starting an offloading application.

28

The following steps describe an entire procedure of implementing and running an offloading
program.

1 Design an offloading application and decide which one or more parts required to be
offloaded.

2 Convert an original application to offloading version by using offloading programming
interfaces discussed in 2.3.4. Developers may need to write configuration files if the
application has.

3 Create executable files for different target nodes if they are implemented by compiled
languages. While applications are developed by interpreted languages, the source files
themselves are executable.

4 Copy proper files manually to specified directories on either computation and storage
nodes.

5 Start offloading parts at first and then computation parts. The main reason of keeping
in such order is that offloading parts have to be ready to provide offloading services
before computation parts start.

Workflow of an offloading application In this section, we illustrate workflow of
an offloading application. Normally, offloading parts can be distributed across multiple
storage nodes. The places where they are depend on distribution policies. For example, a
typical policy is to distribute offloading parts to the nodes where data is [6] [4]. Another
policy of considering load balancing is to equally distribute offloading parts across storage
nodes. Thus, computation parts have to decide which offloading part is about to be invoked
according to a specific distribution policy. After an offloading part completes, it returns
executions to the corresponding computation part.

| A Computation Part |
|1 (Init) I
I I

I

3

Figure 17: An execution flow of an offloading application

Fig 17 shows a workflow of an offloading application with a single offloading invocation.
When an offloading application starts, the following 7 actions occur:

1 Firstly both computation and offloading parts initialize and prepare for their execution.
The main tasks of this action is to distinguish which role they play in applications,
offloading or computation.

29

2 After initialization, offloading parts will be suspended immediately and wait for of-
floading requests sent from computation parts.

3 After offloading parts are ready, computation parts start processing.

4 When running to the place where an offloading invocation is required, the computation
part sends a request to an offloading part and wait for its reply. The request includes
a network address of target node, a name of offloading entry and input parameters.
Network addresses of storage nodes can be recorded in a configure file in order that they
can be easily obtained. Names of offloading entries can be hard-coded in applications,
just like calling a function in source files. All input parameters need to be transformed
to a data stream in order to be transmitted on network.

5 After receiving a request, an offloading part will be activated to parse the request and
start processing.

6 After completion, the offloading part sends a response back to the computation part.
The response comprises of an network address of an computation node and results. As
creating the request, network address of the computation part can be obtained from a
configuration file and results require to be transformed to a data stream.

7 After receiving a response, the computation part continues processing.

Programming Interface The current implementation of offloading framework provides
a group of programming interfaces for C and C++ languages. And it is also quite easy to
define identical interfaces for other languages like java or python. It provides four sets of
interfaces summarized in Table 6.

The second set of interfaces is used to register offloading entries. In C/C++ applica-
tions, offloading entries are addresses of functions in offloading parts. After compilation, all
functions are converted into addresses that an identical function may have different values
in computation and offloading parts. In order to exchange offloading entries between both
parts, we provide a solution of assuming that applications would call register_function to
register functions at first and then exchange function names instead of addresses. Addresses
are automatically converted to names in computation parts and reverse in offloading parts
by calling find_name_by_func_addr and find_func_by_name.

The third set is used to send and receive parameters and results from a data stream.
Both MARSHAL and UNMARSHAL accept input parameter object in type of void * in order to
adapt all types of objects. The following two parameters specify buffer of data stream and its
length. All data exchanging between both parts must implement corresponding MARSHAL and
UNMARSHAL functions which would be automatically called by system. If a function pointer
need to be serialized or un-serialized, it has to be processed as a string after converting to
its name by second set of interfaces.

sharing data In sec. 2.3.3, we have discussed complexity of offloading programs heavily
depends on how to share data. we choose the easiest way of passing data as input and output
parameters because we want to keep offloading programming simple. Two key aspects should

30

Table 6 Offloading Programming Interface

Interface & Description

void init ()

Initialize the system.

void register_function (func_addr)
Register a function and build a map

from its address to name.

func_name find_name_by_func_addr (func_addr)

Get a function name by a given ad-
dress.

func_addr find_func_by_name (func_name)

Get a function address by a given
name.

void MARSHAL (void* obj, char*xbuf, fint* len)

Serialize an object pointed by obj into
a data stream. The address and size of
buffer are specified by buf and len.

void UNMARSHAL (void* obj, charxbuf,| int len)
Un-serialize an object pointed by obj

from a data stream. The address and size
of buffer are specified by buf and len.

void offload_call (addr, func_name, [ins, outs)

Invoke an offloading procedure named
by func_name. The input parameter and
result are specified by ins and outs.

be considered about sharing data. The first one is how to share global data between two parts.
As mentioned before, all data needed by both parts should be passed by input parameters
and result, which are required to be deeply copied in MARSHAL and UNMARSHAL instead of
merely copying object points, because objects created in address spaces are totally different
in two parts.

The second one is how to share code segments. Function entries or executable objects
are a special kind of data in programs. We can not simply copy binary codes and transmit
them to the other part, since they might be not runnable at all. So in our design, we link all
object codes into each part, no matter whether codes are used or not. In order to transmit
a function entry, we build a map between function names addresses and put function names
in offloading requests or responses. Both parts can resolve function names and addresses by
using programming interfaces.

31

2.3.5 Evaluations

In this section, we evaluate data intensive offloading applications, comparing them with
original versions, on our cluster.

Testbed We set up a 2-node, one computation and storage node, cluster serving as a
testbed to evaluate performance of offloading applications implemented by our offloading
framework. Two nodes are connected by internal Ethernet network. Both two nodes have
the same configuration as shown in Table 7.

Table 7 Configuration of Testbed
Configuration | Details
Hardware 1 x Intel Xeon X3430 2.4 GHz processor
1 x 2GBytes of RAM
1 x 1G Ethernet network card
1 x 160 GBytes Sata disk
Software Ubuntu 10.04
Linux kernel 2.6.23

Benchmark Applications

2.3.6 Applications

We set up 5 benchmarks, shown in Table 8, which are well-known I/O intensive applications.
PostgreSQL, Word Count(WC), Sort and Grep are obtained from their official website, while
Inverted Index application is created by ourself. In our experiments, these original applica-
tions execute on computation nodes and load data from storage nodes through Network File
System (NFS) service [11].

We also applied offloading techniques to these applications which has an offloading module
assigned to be running on storage nodes. Details of their implementation are described in
Table 8.

Data Preparation In order to measure PostgreSQL, we create five databases whose
sizes are 400MB, 600MB, 800MB, 2GB and 4GB. We do not generate any index in these
databases so that PostgreSQL will read real data in tables instead of merely checking index
structure during query processing. Each database is comprised of 1, 000 tables, each of which
has 100 integer attributes. Tuples are equally distributed across these tables that a larger
database has more tuples in each table. Moreover, we also generate 1000 query statements,
each of which scans only one table. Therefore, these 1000 query statements will cover all
tables in a database.

We create five text files, in the same size of ones used in PostgreSQL, for other four
applications as well. FEach text file contains a number of words which are randomly generated.
Due to the limitation of physical memory, we only test inverted index application on first

32

three text files because it will frequently cause page faults which makes a lot of noise in
experiments when the size of input data is larger than memory.

Take PostgreSQL as an example We would like to briefly describe how official and
offloading PostgreSQL work in our experiments. The reason of choosing PostgreSQL as an
example is that it is a relatively more complicated application which has a number of inde-
pendent modules. Moreover, boundaries of I/O intensive modules are highly distinguishable.
It makes us easily partition PostgreSQL into computation and offloading parts.

2.3.7 Official PostgreSQL

Computation Node Storage Node

Official
PostgreSQL
Query

Parser

Rule System

Result
< Executor ™ Data
——

Figure 18: The execution flow of official postgresql

PostgreSQL is an well-known open source relational database management system which
can be freely used and modified for research purpose. We choose the newest stable release,
PostgreSQL 9.0, as a target application in these experiments.

As shown in Fig 18, PostgreSQL backend program, which mainly support SQL queries
in background, has four components. The parser checks a query string for valid syntax
and creates a parse tree after validation process. The rule system applies a group of rules
to rewrite the parse tree to an execution plan. The optimizer tries to create an optimal
execution plan and the executor runs the entire query [8].

Offloading PostgreSQL

Computation Node Storage Node
)

Parser

Query

Y

Rule System

_ Result

<

Optimizer |4+ — — —

Computation Offloading

Part Part
|

Figure 19: The execution flow of offloading postgresql

In a query procedure, the executor is a typical I/O intensive program. It may read or
write large amount of data from storage system during processing expensive operations, such

33

as scanning or joining tables. As shown in Fig 19, we modified official PostgreSQL 9.0 by
assigning the executor to be executed on storage nodes. We do not change modules related
to storage system, such as access methods and disk space manager so that an offloading
PostgreSQL is able to use the same data files. The only difference from official versions is
that the executor receives the execution plan from a remote optimizer and sends results back
to the backend program.

As discussion in Sec. 2.3.4, we link computation and offloading parts together as an
executable program. And we copy it with meta-data files to both computation and storage
nodes. Meta-data files, much smaller than real data, record information about databases and
tables, such as schema and relationship between tables, which are required by both parts.
We provide an additional command-line argument to distinguish whether it is an offloading
program or not. These details will be handled by init interface.

Shared memory is the place where PostgreSQL shares global resources, such as locks and
buffers. It is created by a Postmaster daemon and used by a number of backend programs. In
our offloading PostgreSQL, the computation and offloading parts will create shared memory
on their nodes separately and they do not shared any global resources for following two
reasons. The first one is that we use only a client to do queries, so there is only one backend
program existing in test environment. No other backend programs use shared memory at
the same time. In addition, global resources, such as meta-data, shared by computation and
offloading parts are read-only in our test, so it is not a problem that it has two copies, each
of which exists in either part. For example, we do not change schema information which is
loaded by both parts from their meta-data files.

2.3.8 Results

In this section, we present experimental results of comparing offloading applications to their
original versions.

Overall performance evaluation

Fig. 20 illustrates execution time comparison of offloading and original applications listed
in Table 8. In these five groups of experiments, offloading technique provides speedup which
becomes more obvious when data size grows. Due to network latency in each time of com-
munication between nodes, official applications suffer from a large number of such latency
when accessing remote data. However, offloading applications only experience once during
processing in our experiments. Another reason that makes execution time reduce is that
official applications need to transfer entire data which naturally increases as data set grows.
As shown in Fig. 22, we will give more details in Sec. 2.3.8. On the other hand, such require-
ment for offloading applications keep relatively invariable because only input and output
parameters of offloading modules are needed to be transmitted on network. Therefore, such
difference becomes larger as data sets grow.

Another observation we obtain is that difference of time consumption between two Post-
greSQLs on 4GB data set is much greater than others. The pattern of accessing data in
PostgreSQL is totally different from other applications. WC, Sort, Grep and Inverted Index
enjoy contiguous I/O operations in order that I/O costs can be optimized by NFS, such

34

Il Offloading PostgreSQL Il Offloading WC Il Offloading Sort
8007 [Official PostgreSQL 120] Official WC : [Jofficial Sort

Execution Time (s)
Execution Time (s)
Execution Time (s)

400 600 800 2000 4000 400 600 800 2000 4000 400 600 800 2000 4000
Data Size (MBytes) Data Size (MBytes) Data Size (MBytes)

(a) PostgreSQL (b) Word Count (¢) Sort

25

Il Offloading Grep Il Offloading Inverted Index
%fl Jofficial Grep [Jinverted Index

4000 400

600 800 2000 600
Data Size (MBytes) Data Size (MBytes)

(d) Grep (e) Inverted Index

S

Execution Time (s)
Execution Time (s)
5 &

o

°

Figure 20: Execution Time Comparison of I/O Intensive Applications

as using prefetching technique. However, PostgreSQL reads data in relatively random way
so that these optimization techniques do not work well. In addition, this difference is also
much higher than its own measurement on 2GB data set. Although PostgreSQL uses shared
memory to buffer data recently used, the size of buffers is controlled by itself. However, NFS
service also caches remote data at local memory whose size can expand to more than 1GB.
Therefore, when data size exceeds physical memory capacity, official PostgreSQL will suffer
from much more frequent page faults that would dramatically decrease system performance.

Network Traffic Evaluation

Fig 21 shows network traffic comparison in our experiments. The network burdens of
official applications are much heavier than offloading ones. When official applications are
running, network traffic keeps consistently high which must become a major bottleneck of
entire systems. On the other hand, network resources used by offloading applications can
be nearly overlooked. In particular, all official applications have to retrieve entire data (eg.,
800 MBytes) from storage nodes. But offloading applications only transmit not more than
100 bytes.

In fact, how much network resources they use heavily depends on application designs,
or more exactly the size of input and output parameters of offloading modules. Fig 21(f)
shows different requirements for these five offloading applications. Offloading PostgreSQL
requires transferring 57 bytes of data that contains an internal query plan while Sort and
Inverted Index only transfer 12 bytes, a string of a file name. In an extreme case, offloading
PostgreSQL also has to transmit 800 MBytes data on network if a query is to retrieve an
entire database.

35

S

—— Offloading Sort
—e— Official Sort

a
g
8
8

—— Offloading PostgreSQL
—e— Official PostgreSQL

—— Offloading WC
—e— Official WC

4500

S

4000

o

3500

3000

-

2500

©

2000

1500

Data Transmission Rate (KBytes/s)
o

Data Transmission Rate (KBytes/s)
&
Data Transmission Rate (KBytes/s)

1000
500 05 B
50 100 150 200 256 300 o 5 10 15 20 25 30 35 40 45 o 5 10 15 20 25 30 35 40 45
Time (s) Time (s) Time (s)
(a) PostgreSQL (b) Word Count (c) Sort
L 10° L 10* 70
— —— Offloading Grep —_ —— Offloading Inverted Index @
ﬂ 6 —e— Official Grep % 6 —e— Official Inverted Index 260
2 3 =
g = e
9) %) =
X5 x5 = 50
e e S
ISl 151 -
x4 x4 2 40
8 8 2
g g &
g2 g2 S 20
= = g
£ g1 210
a o <
o 5 10 .15 20 25 30 0 5 10 .15 20 % 30 oPostgreSQL wcC Sort Grep Inverted Index
Time (s) Time (s) Data Size (MBytes)
(d) Grep (e) Inverted Index (f) Amount of Transferred Data
Comparison

Figure 21: Network Traffic Comparison of I/O Intensive Applications on 800 MBytes Data
sets

—— Offloading PostgreSQL
—e— Official PostgreSQL

— Offloading PostgreSQL
4000 —e— Official PostgreSQL

3000

—— Offloading PostgreSQL
—e— Official PostgreSQL

&
g
8

10000 10000
2500
2000

1500 5000 5000

1000

Data Transmission Rate (KBytes/s)

g
Data Transmission Rate (KBytes/s)

Data Transmission Rate (KBytes/s)

L_,-«Nb_.,.l_.._/« N N
o 20 40 60 80 100 120 . 50 100 150 200 250 300 . 350 . 100 200 300 400 500 600 700 800 .5 0
Time (s) Time (s) Time (s)
(a) 400 MBytes (b) 2 GBytes (c) 4 GBytes

Figure 22: Network Traffic Comparison of PostgreSQL on different databases

The pattern of network traffic in Sort application is different from others. As shown in
Fig 21(c), the rate of data transmission in Sort keeps high in very short period of time, while
it keeps consistently high in others during processing. The main reason is that after reading
a certain amount of data, Sort is required to keep texts in order which takes processors a
short period to complete. At these short intervals, network devices are waiting for next
I/O requests. However, other four applications do not have such complicated tasks so that
network devices are very busy.

Dependency on Data Size

We also evaluate network burden of PostgreSQLs on different data sets. Fig. 22 and

36

Fig. 21(a) respectively displays network measurement in 400 MBytes, 800 MBytes, 2 GBytes
and 4 GBytes. We observe that increasing data size leads to a higher and longer lasting net-
work burden in official applications. The main reason is that, as data sets grow, official
PostgreSQL needs retrieve more data from storage nodes which spend more time and re-
sources on data transmission. On the other hand, we do not observe much network traffic
occurred when running offloading PostgreSQL. It offers an evidence that amount of data
transmission in offloading PostgreSQL is independent of data sizes.

2.4 Using Active Storage to Improve the Bioinformatics Applica-
tion Performance: A Case Study

2.4.1 Motivations

Processing massive amounts of data has resulted in a mushrooming of data-intensive appli-
cations like bioinformatics data processing. Evidence shows that the collective amount of
genomic information doubles every 12 months [?]. Most bioinformatics applications have to
deal with the I/O bottleneck issue. Processing huge datasets in a high-performance cluster
normally requires copying data from storage nodes to computing nodes, thereby leading to
a large number of I/O operations. Active storage is an effective technique to improve ap-
plications’ end-to-end performance by offloading data processing from computing nodes to
storage nodes.

Active storage brings three key advantages. First, the amount of data moved back and
forth between computing nodes and storage nodes in clusters can be significantly reduced,
since large datasets can be locally processed by storage nodes before being forwarded to
computing nodes. Second, data-intensive applications run faster, because active storage
nodes accelerate data processing operations. If computing nodes and active storage nodes
efficiently coordinate, both computing nodes and storage nodes can perform data processing
in parallel. Third, network performance in clusters can be improved due to reduced amounts
of data moved into and out of storage nodes.

Challenges: There are two main challenges in applying active storage to support data-
intensive applications on clusters. The first challenge is to partition a parallel application into
computation-intensive and data-intensive tasks. If such a partition is successfully created,
computing nodes will handle computation-intensive tasks whereas active storage nodes will
run data-intensive tasks.

The second challenge lies in the coordination between computing nodes and active storage
nodes. When it comes to applications where computation-intensive tasks are independent
of data-intensive tasks, computing nodes and active storage nodes are non-blocking to each
other, meaning that computing and storage nodes can easily operate in parallel. However, if
computing nodes have to wait for storage nodes to catch up, the blocked computing nodes
could slow down data-intensive applications.

Contributions: In this task, we address the partitioning and synchronization issues in
the context of active storage supporting bioinformatic applications. To solve the blocking
problem incurred by synchronized computing and storage nodes, we developed a pipelining

37

controller —_
O o o g

Mass Storage

- _ —_—

o o o o

Active Storage Node

8 SSD SSD

Buffer Storage

<
S
=
3
a
~
et
o
3
2
7}
=4

Computing Nodes

Figure 23: A cluster involves a collection of computing nodes and active storage nodes.

mechanism that exploits parallelism among data processing transactions in a sequential
transaction stream. We report the effectiveness of the pipelining mechanism that leverage
active storage to maximize throughput of data-intensive applications on a high-performance
cluster.

To demonstrate the effectiveness of the pipelining mechanism designed for active storage,
we implemented a pipelined application called pp-mpiBLAST, which extends mpiBLAST,
which is an open-source parallel BLAST tool. pp-mpiBLAST deals with a sequential data
processing transactions, each of which contains a filtering/formatting task and a mpiBLAST
task. The mechanism overlaps data filtering/formatting in active storage with parallel
BLAST computations in computing nodes, thereby allowing clusters and their active storage
nodes to perform data processing in parallel. The pp-mpiBLAST application relies on active
storage to filter unnecessary data and to format databases, which are then forwarded to the
cluster running mpiBLAST.

We develop an analytic model to study the scalability of pp-mpiBLAST on large-scale
clusters. This model allows us to study the performance of pp-mpiBLAST on a cluster using
active storage. This performance model is ideal for application developers who have limited
computing resources to test the scalability of their parallel applications using active storage.
Furthermore, programmers can use the analytic model to explore the design space related to
the number of computing nodes, active storage speed, data processing capacity, and input
data size. The model shows the behavior of pp-mpiBLAST under different configurations of
the cluster coupled with active storage.

Measurements made from a working implementation and a modeling study suggest that
this method not only improves mpiBLAST’s overall performance by up to 75%, but also
achieves high scalability on clusters coupled with active storage.

2.4.2 Design and Implementation

In this section, we describe the system from the top down: an overview of the system, a
hybrid mix of storage devices, and the parallel pipelined processing. Hereinafter, the active
storage node is refereed to as ASN for short.

38

Active Storage for Clusters: A typical high-performance cluster consists of computing
nodes and storage nodes. Data-intensive applications on clusters can cause heavy I/0 traffic
between the computing and storage nodes in the cluster. To achieve high performance
for data-intensive applications, we aim to reduce network traffic caused by moving massive
amounts of data from/to storage systems in clusters. This goal can be accomplished by
offloading data-intensive computations from computing nodes to active storage nodes.

Fig. 23 illustrates a cluster that involves a collection of computing nodes coupled with
active storage nodes. Storage nodes become active if they can handle application-level data
processing offloaded from computing nodes.

The storage devices can be further divided into two categories: the mass storage and
the buffer storage. Benefiting from the non-volatile memory store, Solid state disk (SSD) is
a new option to fill the latency gap, which is around 5-order-of-magnitude, between main
memory and spinning disks [?]. Thus in our system, SSDs are used as the buffer disk drives:
large-scale data is moved from mass storage to buffer drives before processing. The results
of experiments in Section 2.4.5 show that SSDs not only speed up the I/O but also provide
a better scalability performance. The advantage of using the hybrid mix of both the solid
state disk and the magnetic hard disk is mutual complementarity: the fast and expensive
cooperates with the large-capacity and cost-efficiency.

In this paper, we use a commodity computer as the computing end. The “channel”
formed by the computing nodes of cluster and the ASN is considered as a pipeline, or as-
sembly line. In other words, by applying the active storage, applications containing multiple
stages are capable to extend to a parallel pipelined implementation. The exploration of par-
allelism improve the performance data-intensive applications. As a case study, we extend the
mpiBlast, a well-know parallel BLAST application, to a parallel pipelined implementation,
called pp-mpiBlast.

Parallel Pipelined System:

Native mpiBlast application can be easily considered as two steps: format the raw
database file (corresponding to the query request) and run the parallel BLAST functions
to do the comparison. Thus, the pre-cook (i.e. format) phase and the parallel computation
phase are handled by the ASN and computing nodes, respectively.

How to utilize the active storage device has always been another critical issue. In general,
all cases can fall into two scenarios. The first is that tasks are independent (i.e. computing
nodes and active storage nodes are non-blocking to each other), meaning that computing and
storage nodes can easily can operate in parallel. However, if computing nodes have to wait
for storage nodes to catch up, the blocked computing nodes can slow down data-intensive
applications. For instance, in terms of mpiBlast, the parallel comparison step requires the
formated database file from the previous step. The assembly line pattern is a one of the
solutions for the second scenario.

As a case study, we extend the mpiBlast to a parallel pipeline implementation (hereinafter
refereed to as pp-mpiBlast). The pp-mpiBlast system consists two tasks: 1) raw database
formating, and 2) genome or protein sequences comparison. Further subdividing the pipeline
patterns, there are inter- and intra-application pipeline processing. The pp-mpiBlast is intra-
application parallel processing, which means that, as the name - ‘intra-’ - suggests, one native

39

1
2
Input
File 3

Partition L Inter- L] Sub-

n datan output
[—— [un—— ‘
| (n-1) times | m |

| |

format | . !

I - ! .
I______Active Storage Node ______1 ____Computing Nodes __ __ |

ASN: | formatdb 1]| format db 2] vee

Computing Nodes: H mpiBlast 1 |L mpiBlast 2 I,,_H mpiBlast n
T T Y T ST T Y N

Figure 25: Pipeline Tasks Scheduling

sequential transaction is partitioned into multiple parallel pipelined transactions. The system
performance is improved by fully exploiting the parallelism. The workflow of pp-mpiBlast is
depicted in Fig. 24.

Intra-application Pipeline Processing: As we mentioned in the previous section, in
order to extend a sequential transaction to multiple pipelined parallel transactions, both
partition and merge functions are introduced in the pp-mpiBlast system. Fig. 25 illustrates
the two-task two-stage pipeline processing workflow. The pipeline pattern no only improves
the performance by exploiting the parallelism, but also can solve the out-of-core processing
issue, which means required amount of data are too large to fit in the ASN’s main memory.
In pp-mpiBlast, partition function is implemented within mpiformatdb fucntion running on
ASN. And the merge function is a separate one running on the front node of the cluster.

When partitioning the source data, an assistant function - the integrity-check - automat-
ically returns the extra displacements by scanning the return or the symbol defined by the
programmer. The reason we involved the integrity-check procedure to the partition function
is that there exists the consistency issue of partitioned data files; the content of the source
data file could be broken in shatters (e.g. a sequence could be cut and placed into two slitted
fragments not on purpose). Fig. 26 describes the integrity-check work flow.

Pipeline parallelism is an important processing pattern and we are interested in providing
models and guidance for tuning the scalability and the performance using this pattern. In
Section 2.4.4, we develop a mathematics model for analysis.

40

automatic manually

t——> Starting Point <——

Space, return, 0
other delimited
characters

Starting Point ++

| N ——

o

new Partition size

Figure 26: The workflow diagram of sequence-integrity checking.

2.4.3 Preliminary Result

In order to prove the feasibility of the partition-based intra-application pipeline design, a
preliminary test on a single-node with 2GB memory environment is performed. We extended
Word-Count and String-Match benchmarks of Phoenix system [?], which is a shared-memory
implementation of MapReduce, to intra-application pipeline editions using partition and
merge runtime functions we developed under Phoenix system. Fig. 27 depicts the work
flow of the extended approach. After the input data is partitioned into fragments in size
of 600 MB, each of them is processed sequentially using native word-count or string-match
applications. And then, the generated sub-results are merged at the end. The control test
is that we run the native applications to process the input data without the partition and
merge functions.

Table 9 shows the results. We can observe that in terms of data-intensive, especially
memory-intensive, applications, partitioning can significantly reduce the running time. For
example, in terms of word-count application results, an average 2.4X speedup of time con-
sumption can be achieved. To the contrary, partitioning does not benefit the speed of the
string-match application. But, it can make the large-scale data-intensive applications run-
ning on limited memory machines. For example, when executing the string-match application
without the help of partition function, the native system does not support the case that the
input data size is more than two times of the local memory size. Thus, the preliminary
results show that the partition-enabled design can (1) improve data-intensive applications’
performance, (2) adapt the data-intensive applications to limited memory machines, or both.

41

g Partition 1 T
‘/// ————————— | m—————— === |
I | | | worker ‘
leduce
1| Coer) N |
| | |
) 3 ‘
| |
‘ sput | | : sont || | : Merge “
| ‘ worker n, ‘ ‘ ‘worker n ‘
1| |]
| | |
|
| ‘ Reduce
I | I
1| | |
| \
I

Figure 27: Workflow of the extended Phoenix model - intra-application pipeline

2.4.4 Modeling and Analysis

We develop in this section an analytic model to study performance and scalability of the
parallel pipelined BLAST on large-scale cluster computing platforms. The analytic model
has the following three key advantages:

e Performance Evaluation: The model allows us to study the performance (i.e.,
speedup and throughput) of parallel pipelined BLAST system with active storage.

e Scalability Analysis: The performance model is ideal and suitable for bioinformatics
application developers who have limited local computing resources to test the scalabil-
ity of their parallel applications using active storage.

e Design-Space Exploration: Application programmers can use the model to explore
the design space related to the number of computing nodes, active storage speed, data
processing capacity, and input data size. The model shows the behavior of the parallel
pipelined BLAST under different configurations of a high-performance cluster coupled
with active storage.

Section 2.4.2 describes the parallel pipelined implementation of a basic local alignment
search tool or BLAST. Our pipelined BLAST has two data processing stages: (1) formatting
data and (2) retrieving and processing formatted data. The first stage of the pipeline pre-
process is the input of a data set before passing on to the second stage that run mpiBLAST
- a parallel implementation of BLAST.

Response time, speedup, and throughput are three critical performance measures for the
pipelined BLAST. Denoting T} and 75 as the execution times associated with the first stage
and second stage in the pipeline, we can calculate the response time T,.esponse for processing
each input data set as the sum of 77 and 7. Thus, we have

Tresponse - Tl + T2‘ (21)

42

The throughput (see Eq. 2.2) of the two-stage pipelined system is inversely proportional
to the maximum of the two execution times 77 and T5.

Th hput = ———. 2.2
roughpu maz (T, T) (2.2)
The speedup for the pipelined BLAST is:
Tun ipeline
Speedup = —unpiwelined (2.3)
Tpipelined

where Tipnpipetinea 18 the data processing time for the unpipelined BLAST and Tjpeiinea is
the processing time of the pipelined BLAST. If n is the number of input data sets to be
processed by a cluster with active storage, then processing time of the unpipelined BLAST
is the product of n and T,esponse (see Eq. 2.1), leading to

Tunpipelined =nX Tresponse =nX (Tl + TQ) (24)
The processing time for the pipelined BLAST is:

Tpipelined =T+ (TL - 1) X mazx (le T2) + T

= Tresponse + (n - 1) X max (Tla TQ)) (25)

where 77 is the processing time of stage 1 for the first data set, 75 is the execution time of
stage 2 for nth data set, (n — 1) x maz(T,Ts) is the time spent on n — 1 data sets when
the two stages are carried out is parallel. Applying Eqgs. 2.4 and 2.5 to Eq. 2.3, we obtain

speedup as:
n

1+ (n—1)x

Speedup = (2.6)

max(T1,T2) *

Tresponse

Now we are positioned to model execution times 7} and T3 for the two stages in the
pipeline. The processing time of the first stage is the sum of (1) data input/output times
and (2) filtering/formatting time 77} comp. Input time is proportional to unformatted input
data size s, and inversely proportional to disk read bandwidth b;. Similarly, output time

is proportional to formatted output data size s; and inversely proportional to disk write
bandwidth b,. This leads to:

2+ Ty comp(52) + 2F- (2.7)
% o

The execution time 75 of stage two is the sum of (1) input time of formatted data and (2)
processing time 75 .omp. The input time depends on data size sy, disk input bandwidth b;,
and the number m of computing nodes in a cluster. Assuming that the formatted data size
s¢ is uniformed distributed among the m computing node, we can express the input data as

Tl(suu Sf, bia bo) =

msbei. Thus, the execution time T, for the second stage is given below:
Sy,
To(s¢,b;ym) = T5 comp(S,m), 2.8
2(sy,) mxbi+ 2,comp(Sf,1M) (2.8)

where Tb comp(sf, m) is affected by the formatted data size sy and the cluster size (i.e., number
of computing nodes m).

43

mpiformatdb 12 nodes
.

T T
SSD Modeling Data
— — — HDD Modeling Data|
L0
,
7z
,

3500

3000

2500

n (s)

5

2000~

1500

Time Consumpt

1000~

500

0 500 1000 1500 2000 2500
Input Data Size (MB)

Figure 28: Time Consumption Trends Comparison: SSD vs. HDD.

2.4.5 Evaluations

Evaluation Environment:

We implemented the pp-mpiBlast in a 14-node cluster (1 node works as ASN), whose
configuration is outlined in Table 10. The nodes in the cluster are connected by Ethernet
adapters, Ethernet cables, and one 1Gbit switch. We choose an Intel X-25M 80GB solid
state disk, and a SATA Raid tower with four WD50000AAKS disks as a RAID 0 array.
The MPICH2-1.0.7 is chosen as the message passing interface (MPI) in the cluster. The
pp-mpiBlast is extended from mpiBlast-1.5.0, in which NCBI Blast 2.2.24 is the comparison
tool. All applications are compiled with gcc 4.4.1.

Individual Node Evaluation:

We perform mpiformatdb program under different storage disk schemes: w/ SSD as the
buffer disk and w/o buffer disk. Since the data pre-fetching is out of the scope of this paper,
when we test the SSD cases, we modify the program to move the data from mass storage
devices to the SSD and then trigger the format function. That means the time consumption
of SSD contains both the data-transfer and data-format phases. Table 11 shows the results.
Observed from the table, the case of SSD (e.g.the second row) always perform better than
the HDD since it benefits from large amount of random read and write when the function
is reordering the sequence in a descending order based on entry length. After balancing the
disk capacity, storage reliability, I/O speed, and random w/r speed, the hybrid mix of mass
storage and buffer disk is a promising choice. Fig. 28 shows the comparison of trends of
using SSD and HDD. We can observe that the scalability of using HDD for mpiformatdb
function is not good, compared with the SSD one. Thus in the following experiments, we
use the SSD as the buffer disk.

System Performance Evaluation:

Figure 29 shows the system performance evaluation. The pp-mpiBlast testbed, which is
configured by 12 computing nodes and 1 ASN (follows the pipelined processing pattern),
is compared with two control experiments (native systems with different number of nodes)
: the native mpiBlast running on 1) 12 nodes cluster (equals to the number of computing
nodes in pp-mpiBlast testbed), and 2) 13 nodes cluster (equals to the total number of nodes

44

7 T T T
I \/C: vs no.par
sl B \WC: vs seq
[]SM:vs no.par
[]SM:vsseq
5 -
o 4
>
©
]
(O]
o
w 3+
2 -
| H HH
il | D |
500M 750M
Data Size

Figure 29: System Evaluation Results I: Execution time comparison between pp-mpiBlast
system and native system (running on a computer cluster of 12 nodes). The pp-mpiBlast
system contains a twelve nodes computing cluster and one ASN. Results are generated under
3 different partition sizes: 250 MB, 500 MB, and 1.25 GB, which are presented by three sub-
figures, respectively from left to right.

in pp-mpiBlast testbed). The reason to choose two competitors is to present the performance
improvement comprehensively.

In Fig.29 and Fig.30, the testbed with native mpiBlast contains 12 and 13 nodes, respec-
tively. In each figure, results generated by pp-mpiBlast are using 3 different partition sizes:
250 MB, 500 MB, and 750 MB, which are presented by three sub-figures, respectively from
left to right. Observed from the figures, the time consumption comparison results show that
the performance of pp-mpiBlast beat both control testbeds: averagely reducing the execu-
tion time by 50% (i.e. 2X speedup). And Fig3l shows that: the improvement is greater
when the input data size increase within a certain range of the input size, which is relative
to the main memory size.

We also compare the performance in terms of different partition size. Fig. 32 presents
that 500 MB partition provides a better performance in general. Based on the data, the

45

180 T T T T T T T

160

140

120

100

80

60 -

40

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 30: System Evaluation Results II: Execution time comparison between pp-mpiBlast
system and native system (running on a computer cluster of 13 nodes). The pp-mpiBlast
system contains a twelve nodes computing cluster and one ASN. Results are generated under
3 different partition sizes: 250 MB, 500 MB, and 1.25 GB, which are presented by three sub-
figures, respectively from left to right.

reason can be summarized as followings. 1) The smaller the better is not true because small
partitions always generate more overheads. And 2) the larger the better is also not convinced
since the . It means that a partition-size-threshold exists for optimal performance. The issue
of measuring the threshold in quantity will be dug in our future work.

Based on the test results, we can see that using intra-application pipeline parallel pro-
cessing model to extend mpiBlast improves the performance and scalability. However, as we
mentioned in the previous sections, the approach is not general; it requires that the target
application can be decomposed into stages, such as streaming and RMS applications. Also,
applications parallelized using pipeline model are very sensitive to load balancing. In order
to avoid bubbles or reduce their sideeffect, how to balance the heterogeneity issue between
the ASN and computing nodes will be our next topic.

46

2.100 2.0
o 1.875 1.8
>
o
[0
[0}
& 1.650 1.6
> 2s50MmB > 2s50MmB
1.425 D 500 MB 1.4 D 500 MB
O 750MB O 750MmB
1.200 1.2
1G 125G 15G 1.75G 2G 1G 125G 15G 1.75G 2G
Data Size (GB) Data Size (GB)

Figure 31: Speedup Trends: As input data size grows larger, the performance speedups of
using pp-mpiBlast increase. Sub-figure on left is the comparison result between pp-mpiBlast
and the 12-node testbed. And the right one is the result compared with the 13-node testbed.

Time Comparison of Stystems with Different Partition Sizes
650 T T T T T T T T T

—O— Partition Size: 250MB
—<}— Partition Size: 500MB]
—H&— Partition Size: 750MB i)

600

550

500

Time(s)

450

300 | | | | | |
1 11 1.2 13 14 15 1.6 1.7 1.8 1.9 2

Database Size(GB)

Figure 32: Time Consumption Curves Comparison: Different Partition Size.

A7
3 Training and Development

3.1 Student Support

This project has directly supported about 8 students including 6 doctoral students and
2 undergraduate students. The project also indirectly contributed to approximately 17
graduate students who took the COMP7500 (i.e., Advanced Operating systems) class and
65 undergraduate students.

The following 6 doctoral students have been partially supported by this NSF grant in
year 1 (i.e., 2009-2010):

o Adam Manzanares

Jiong Xie

James Majors

Zhiyang Ding
e Xijaojun Ruan
e Shu Yin

The following 9 doctoral /master’s students have been partially supported by this NSF
grant in year 2 (i.e., 2010-2011):

e Xiaojun Ruan (Doctoral Student)
e Zhiyang Ding (Doctoral Student)

e Shu Yin (Doctoral Student)

e Jiong Xie (Doctoral Student)

e Maen Al Assaf (Doctoral Student)
e Yixian Yang (Doctoral Student)

e Yun Tian (Doctoral Student)

e James Majors (Master’s Student)

e Jianguo Lu (Master’s Student)

The following 2 undergraduate students have been partially supported by this NSF grant
in year 1 (i.e., 2009-2010):

e Joshua Lewis

48

Figure 33: Our undergraduate research assistants helped in building a cluster system.

e Tsukasa Ogihara

The following 4 undergraduate students have been partially supported by this NSF
grant in year 2 (i.e., 2010-201a):

e Joshua Lewis

e Alfred Nelson

e Drew Pitchford

e John Barton

e Greg Poirier

e Alexander Luchs
e Bryant Haley

e Kathryn Catlett

e Riley Spahn

49

&
D
D
3]

i

2V}

F

VAL

Figure 34: The cluster computing system built by our undergraduate research assistants.

3.2 Research Experience for Undergraduate Students

To recruit new undergraduate students, especially women and minorities, to conduct re-
search in the area of storage systems, we designed a research program that offers ample
opportunity to undergraduate students to do intensive research in data-intensive computing
with the Pls. In particular, students and the Pls are brought together to conduct research
experiments in the field of high-performance storage systems. The photo below shows two
undergraduate students - Tsukasa Ogihara (right) and Joshua Lewis (middle) - are building
a cluster computing system using commodity-off-the-shelf (COTS) hardware components.

The cluster system (see Figs. 33 and 34) built by our undergraduate research assistants
will be used as a high-performance computing platform to support our computer security
education. The cluster recently build in our department at Auburn supports security middle-
ware services for secure software applications. We will use this cluster computing platform
to design and implement study how to improve software application’s quality-of-security
without adversely affecting performance.

3.3 Contributions to Courses

This project has directly and indirectly contributed to the following classes:
e COMP7970: Storage Systems
e COMPT7500 Advanced Operating Systems

90

COMP4370: Computer and Network Security
COMP2710 Software Construction

COMP4300: Computer Architecture

COMP7370: Advance Computer and Network Security

4 Qutreach Activities

The outreach activities include curriculum enrichment presentations, engineering clubs, and
tutorial services. In year 1 (i.e., 2009-2010), the PI had given 7 research talks related to this
NSF funded project:

e Improving Energy-Efficiency and Reliability of Storage Systems, Seminar talk at the
University of New Orleans, Sept. 4, 20009.

e Can We Improve Energy Efficiency of Secure Disk Systems without Modifying Security
Mechanisms? the IEEE NAS09 Conference, ZhangJiaJie, China, July 10, 2009.

e Security-Aware Scheduling for Real-Time Parallel Applications on Clusters, Lecture
at Huazhong University of Science and Technology, Wuhan, Hubei, China. June 22,
2009.

e How to Read Papers? Seminar talk at Wuhan National Laboratory for Optoelectronics,
Wuhan, China, June 17, 2009.

e Energy Efficient Scheduling for High-Performance Clusters, Seminar talk at Huazhong
University of Science and Technology, Wuhan, Hubei, China. June 8, 2009.

e An Overview of Auburn University, Seminar talk at Nanjing University of Information
Science and Technology, Nanjing, China, June 3, 2009.

e Thinking About Going to Graduate School? Seminar talk at Nanjing University of
Information Science and Technology, Nanjing, China, June 3, 2009.

The PI gave a talk on high-performance clusters at Taiyuan University of Science and
Technology, China (see Figure 35). More than 30 faculty members and 300 undergraduate
and graduate students attend the Pls seminar focusing on energy conservation techniques.

On April 23rd, Dr. Jiang with the University of Nebraska-Lincoln and two of his doctoral
student visited the PI’s new storage systems laboratory at Auburn University (see Figure 36).
Dr. Dan Feng along with her two doctoral students also visited the PI's research group.
Seven doctoral student from the PI’s research group gave presentations, reporting their new
findings from the projects supported by the U.S. National Science Foundation. Drs. Jiang
and Feng provided insightful suggestions and comments on the research projects led by the
PI at Auburn University.

51

Figure 36: Drs. Hong Jiang and Dan Feng along with their doctoral students visited the
PI’s new storage systems laboratory at Auburn University

52

In year 2 (i.e., 2010-2011), the PI had given 7 research talks related to this NSF funded
project:

An Application-Oriented Approach for Computer Security Education, invited talk at
the Information Security and Computer Applications (ISCA2011) Conference, Feb. 25,
2011.

A Novel Application-Oriented Approach to Teaching Computer Security Courses. Poster
Session at NSF CCLI/TUES Conference, January 27, 2011.

Energy Efficient Prefetching From models to Implementation. Seminar talk at Huazhong
University of Science and Technology, Wuhan, Hubei, China. June 2010.

How to Read Papers? Training Session for REU students at Auburn University, May
18, 2010.

How to Succeed in the AU REU Program? Training Session for REU students at
Auburn University, May 17, 2010.

References

Gnu core utilities. http://www.gnu.org/software/coreutils/.
Gnu grep. http://www.gnu.org/software/grep/.

Postgresql. http://www.postgresql.org/.

Apache hadoop, 2006. http://lucene.apache.org/hadoop/.
Corba. http://www.corba.org/, 2010.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107-113, 2008.

Zhiyang Ding, Xiaojun Ruan, Jiong Xie, Shu Yin, Yu Tian, Xiao Qin, and Kai H.
Chang. Multicore-embedded smart disks. In Technical Report No. 1003, Department
of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA,
2010.

The PostgreSQL Gloabal Development Group. Postgresql developer’s guide.
http://www.postgresql.org/docs/9.0/interactive/index.html.

M. Henning. The rise and fall of corba. Queue, 4(5), 2006.

IIT R. B. Ross P. H. Carns, W. B. Ligon and R. Thakur. Pvfs: a parallel file system
for linux clusters. Proceedings of the 4th annual Linux Showcase and Conference, pages
28-28, 2000.

[11]

[12]

[13]

[14]

[15]

[16]

93

S. Kleiman D. Walsh R. Sandberg, D. Goldberg and B. Lyon. Design and implementa-
tion or the sun network filesystem, 1985.

Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. Active disks for
large-scale data processing. Computer, 34(6):68-74, 2001.

P. Schwan. Lustre: Building a file system for 1000-node clusters. In Proceedings of the
2003 Linuz Symposium, 2003.

Haiying Shen and Yingwu Zhu. A proactive low-overhead file replication scheme for
structured p2p content delivery networks. J. Parallel Distrib. Comput., 69(5):429-440,
20009.

Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James Majors, Adam
Manzanares, and Xiao Qin. Improving mapreduce performance through data place-
ment in heterogeneous hadoop clusters. In Proceedings of the 2010 Int’l Heterogeneous
Computing Workshop, Atlanta, GA, USA, 2010.

Ji Zhang, Xiaojun Ruan, Jiong Xie, Shu Yin, Yu Tian, Zhiyang Ding, and Xiao Qin. An
offloading framework for i/o intensive applications on clusters. In Technical Report No.
1104, Department of Computer Science and Software Engineering, Auburn University,

Auburn, AL, USA, 2011.

Table 8 Configuration of Testbed

Applicati

pldescriptions

PostgreSQIt is a relational database manage-

9.0 [3] ment system and its offloading ver-
sion is to offload executor module
to storage nodes. The offloading
part receives an execution plan and
run real queries. The computation
part manages connection to clients,
transfer SQL statements to execu-
tion plan and sends results back to
clients.

Word It counts the number of words in a

Count set of files. In an offloading Word

in GNU | Count, the offloading part is to cal-

coreutils | culate occurrence of words in one

7.4 [1] | file. And the computation part sum
them up.

Sort in | It sorts lines of a text file in alpha-

GNU betical order. In an offloading Sort,

coreutils | the entire program is treated as an

7.4 [1] | offloading part which receives a file
name and stores sorted text in a file.

GNU It searches through a file for lines

Grep which contains a given keyword. In

2.7 [2] | an offloading Grep, the offloading
part is to find keywords in the file.
And the computation part only de-
livers keywords and input file name
to the offloading part.

Inverted | It loads a set of files and builds

Index a map between words to their oc-

(our currence. The offloading part con-

bench- structs a map for each file and com-

mark) putation part delivers file names to

the offloading part.

o4

95

Table 9: Running time (in seconds) of performing the Word-Count and String-Match bench-
marks w/ and w/o partition function under different input data size (in GBytes) on single
node. The testbed machine contains 2 GBytes main memory.

WordCount (s)
1 GB 1.25 GB

StringMatch (s)
1GB 1.25GB

w/ partition | 40.50 50.91 17.76 20.61
w/o partition | 85.71 139.54 | 17.62 21.00
Table 10: The Test Platform
Computing Nodes ASN
CPU Intel Xeon X3430 Intel Q9400
Memory 2GB
OS Ubuntu 9.04 Jaunty Jackalope 64bit version
Kernel version 2.6.28-15-generic
Network 1000Mbps

Table 11: Time cost (in seconds) of performing mpiformatdb program under different input

data size (in MB) on an ASN.

Running time (seconds)

Devices | 500 MB 750 MB 1GB 125GB 15GB 1.75 GB
HDD 108.4 369.5 639.1 945.6 1385.0
SSD 101.9 1644 2259 291.1 369.5

	Endorsement.Qin.CAREER.Continuation.2011.pdf
	CAREER-Report

